
@ Computer Graphics, Volume 22, Number 4, August 1988

A Modeling System Based On Dynamic Constraints

R o u e n B a r z e l
A l a n H. B a r r

C a l i f o r n i a I n s t i t u t e o f Technology
P a s a d e n a , C A 91125

Abstract
We present "dynamic constraints," a physically-based technique for
constraint-based control of computer graphics models. Using dynamic
constraints, we build objects by specifying geometric constraints; the
models assemble themselves as the elements move to satisfy the con-
straints. The individual elements are rigid bodies which act in ac-
cordance with the rules of physics, and can thus exhibit physically
realistic behavior. To implement the constraints, a set of "constraint
forces" is found, which causes the bodies to act in accordance with the
constraints; finding these "constraint forces" is an inverse dynamics
problem.

KEYWORDS: Modeling, Dynamics, Constraints, Simulation
CR categories: 1 .3 .5--Computat ionai Geometry and Object Model ing ;
1.3.7--Three-Dimensional Graphics and l~ealism

1 Introduction
Some of the most natural and graceful motion in computer anima-
tion has been achieved recently by simulating the physical behavior
of objects. But physical simulation has not yet become the s tandard
technique for modeling and animation, because of several limitations:

• S imu la t i ons are hard to imp lemen t : Typically, a special-purpose
program is writ ten to simulate the behavior of a given computer
graphics model; the overhead for making new models is large.

• S imu la t ions are hard to control: If "innate" behavior is pro-
g rammed into models, it becomes hard to make the models do
exactly what we want; the behavior is often determined indirectly
by non-intuitive or non-orthogonal parameters .

i S imu la t i ons are slow: Physical s imulation can be computat ionally
intensive.

The goal of this work is to develop a modeling sys tem in which it is
easy to build and animate physically-based computer graphics models.
To this end, our modeling approach is based on four features:

• Generali ty: A model is built from a collection of primitive
physically-based elements.

• Geometr i c Constrain ts : A model is constructed by applying con-
s t raints to the objects, s tar t ing from an initial configuration of
the primitive elements. A model is also positioned and animated
through constraints.

• N e w t o n i a n Mechanics: Each primitive element is a rigid body
whose motion is due to the effects of inertia and forces and torques
acting on the body. Many of the forces and torques are externally
applied; other forces and torques, however, are derived from the
geometric constraints.

• Equivalence o f Model ing and A n i m a t i o n : The temporal behavior
of physically based objects is bound up in the model itself.

To implement the constraints, we solve an inverse dynamics prob-
lem: given constraints on the behavior of the model, the problem is
to determine the forces which result in an example of the constrained

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Comput ing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

@1988 AC M-0-89791-275-6/88/008/0179 $00.75

~gravlty
i
i
i
i

V

~gravity

b.

Figure 1: All primitive bodies obey Newton's laws. e.g. (a) A ball released
in gravity falls; (b) A ball thrown in gravity moves in an arc.

behavior we desire. Thus , we convert each constraint into a "constraint
force"; as the model animates, the constr~.int forces are continuously
computed, to continuously mainta in the constraints.

Sec. 2 of this paper presents the modeling system, and provides
implementat ion notes. Sec. 3 discusses the inverse dynamics problem.
See. 4 presents the technique for set t ing up and solving a "constraint-
force" equation. The simulation of Newtonian mechanics, derivations
for various examples of constraints, and miscellaneous mathemat ica l
details are found in the Appendices.
R e l a t e d W o r k
[Witkin, Fleischer, and Barr 87] uses "energy" constraints to assem-
ble 3D models, for changing the shape of parametricaily-defined
primitive objects. This work is not concerned with dynamic me-
chanical simulation of models. [Platt and Barr 88] uses augmented
lagrangian constraints in the physical simulation of flexible ob-
jects. [Isaacs and Cohen 87] does physical s imulation of rigid bod-
ies, for the special ease of linked sys tems without closed kinematic
loops. They share our emphasis on ease of modeling, and also
use an inverse-dynamics formulation to control the models ' behavior.
[Wilhelms and Barsky 85] utilizes physically based modeling, bu t has
a reduced emphasis on control.

2 The Modeling System
Modeling with the "Dynamic Constraints" sys tem consists of instan-
t iat ing primitive bodies, connecting and controlling them with con-
straints, and influencing their behavior by explicitly applying external
forces. The modeling sys tem thus has three libraries:

• Pr im i t i v e bodies: A collection of rigid .bodies, such as spheres,
rods, torii, and more complex shapes, tha t are the component
elements of models. The modeler specifies the body density, as
well as specific parameters such as t h e length and radius of a
rod. Each body type defines the quantit ies needed for physical
simulation, such as the rotational inertia tensor for tha t body
type.

• E x l e r n a l applied forces: Forces tha t the modeler can introduce
into the model, including gravity, springs, and damping forces.
Each force has parameters specific to the force, such as damping
coefficients or spring constants.

• Cons tra in ts : Various types of geometric constraints, such as
: 'point-t~nail" or "orientat ion" are described below.

To build a model, we make instances of objects, calculate the forces,
and run the simulation. We also specify "timelines" of events to take
place, such as creating or removing instances, turning constraints or
explicit forces on or off, or otherwise adjust ing parameters .

2 . 1 N e w t o n i a n M e c h a n i c s
Fig. 1 illustrates one of the simplest examples of a body obeying New-
ton 's laws. This behavior is easy to simulate: Appendix A describes
the general newtonian simulation procedure.

i' • ? •
• •J:•..

179

f SIGGRAPH '88, Atlanta, August 1-5, 1988

a. A rod floating in . , ~
Sp&C~:

b. User constrains
end of rod to a
'%nil" :

S
\

J

c. End of rod flies
to nail:

• aR

/

d. Introduce grav-
ity; Pendulum
swings:

s t ay s ~ n a i I

/ / /~ ~

Figure 2: "Point-to-nail" constraint. A user creates a pendulum by fix-
ing an endpoint of a rod at some location in space. The constraint causes
the rod to "fly" into place, assembling the pendulum. See videotape
[Caltech '87 Demo Reel].

All primitive bodies in our sys tem exhibit physically realistic her
havior, in the sense tha t they respond correctly to forces and torques.

2 . 2 C o n s t r a i n t s
We show some examples of constraints supported by our modeling sys-
tem.

• "Point-to-Nail" constraint (see Fig, 2): This fixes a point on a
body to a user-specified location in space. The body may swivel
and swing about the constrained point, bu t the constrained point
may not move.

• "Point-to-Point" constraint (see Fig. 3): This forms a joint be-
tween two bodies. The bodies may move about freely, as long as
the two constrained points s tay in contact.

• "Point- to-Path" constraint (see Fig. 4a): We can require a point
on an object to follow an arbitrary user-specified path; this al-
lows us to animate models by using s tandard kinematic keyframe
techniques.

• "Orientation" constraint (see Fig. 4b): A constraint to align ob-
jects by rotat ing them.

• Other constraints (not illustrated): Other constraints include
"point-on-line," which restricts a point to lie on a given line, and
"sphere-to-sphere, 'j which requires two spheres to touch, but lets
t hem slide along each other.

We can easily add new types of geometric constraints to our con-
straint library, by defining the constraint "deviation" function and de-
riving various required quantities, as described in Appendix C. The
only restriction is tha t the "deviation" function be twice-differentiable
(as is discussed in the appendix).

2 . 3 C o n s t r a i n t F o r c e s
When we have built a model using dynamic constraints, the model is
held together by constraint forces, as i l lustrated in Fig. 5. Thus the
constraint forces are analogs of the internal forces which hold the parts
of compound objects together.

Constraint forces also assemble the models, pulling the com-
ponents into the proper configurations. Thus constraint forces
represent forces which could be used to assemble real-world ob-
jects. For example, figures in the appendices show frames from
animations demonst ra t ing the self-assembly of space s t ructures
[Burr, Von Herren, Barrel, and Snyder 87].

a. Pendulum of / n / n i l

Fig. 2d, and a sec-
ond rod:

b. User constrains

f

ends of rods:

stays ~natl

c. Ends of rods fly f..xe/d~{
together: / / / / . ~ f

d. Introduce gray-

~nail
s t a y s ~ I[f i x e d ~

gravity
~---~

 fj"

ity; Compound
pendulum swings:

Figure 3: A "point-to-point ~ constraint. A users adds a second rod to
the pendulum of Fig. 2, to create a compound pendulum. See videotape
[Caltech '87 Demo Reel].

Figure 4: Other constraint examples. (a) "Point-tc-path ~ constraint. This
constraint pulls objects along user-specified paths. (b) "Orientation" con-
straint. We rotate the rod to make its axis parallel to the slot axis.

2 . 4 I m p l e m e n t a t i o n
We describe here the high-level program structure; details of simulat-
ing Newtonian mechanics are given in Appendix A, the procedure to
calculate the constraint forces is given in Sec. 4.4.

Our modeling sys tem is implemented in C o m m o n Lisp on Symbolics
Lisp Machines, using Symbolics' object-oriented "Flavors" mechanism.
The fundamenta l object classes we have defined are:

• r ig id-body: a primitive body in the model. This class defines the
functions and s ta te variables needed for the dynamics calculation
(see Appendix A), including a list of forces and torques act ing
on the body. There are subclasses for each type of body in our
library; each subclass provides type-specific information, such as
the rotat ional inertia tensor.

• con t ro l -po in t : a point on a body, or in space. A point on a body
contains a reference to the body, as well as the posit ion of the
point in body-coordinates. A point in space defines its position,
which can be constant , or a funct ion of t ime. Forces and con-
s t ra ints are typically created by specifying the control-points at
which they act.

• f o rce : a force being applied to a body. Each force contains a
reference to a control point at which it is applied. There a r e
subclasses for each type of force in our library; each subclass
provides a funct ion tha t computes the force.

• c o n s t r a i n t : any type of dynamic constraint . There are subclasses
for each type of constraint in our library. Each subclass provides

180

i Computer Graphics, Volume 22, Number 4, August 1988
ii

H

/" 122

a. Forces on upper r o d

, s a i l

'\\,
",, ", F2

b. Forces on lower rod

Figure 5: Constraint forces holding together compound pendulum of Fig. 3d.
The constraint forces model the internai forces of a real-world pendulum. (a)
shows forces on the upper rod, (b) shows forces on the lower rod: .Fg is gravity
pulling down on rods. F1 is the "point-to-nail ~ constraint force on the upper
rod, holding it at the nail. F2 is the "point-to-point" constraint force on the
lower rod, holding it to the upper rod; -F2 is the reaction force on the upper
rod.

the quanti t ies needed to determine the constraint force (described
in Appendix C). Each constraint also keeps references to the
bodies being constrained, and associates the appropriate forces
with the bodies.

All objects handle a "draw" message, which displays the object in
its current state. For debugging a model, we send the "draw" mes-
sage to all objects, including forces, control points, and constraints; for
producing an animation, we send the "draw" message only to bodies.

Some examples of subclasses are:
• rod: a subclass of rigid-body. This class provides the values spe-

cific to rods, e.g. the rotational inertia tensor (see Appendix A).
The c l ~ also associates two control points with each rod, named
"endl" and "end2", at the ends of the rod, and provides functions
to access them.

• nail: a control point fixed at a location in space.
• point-to-nail: a subclass of constraint. Provides the functions

which calculate the terms needed for a "point-to-nail" constraint
(see Sec. 4, Example 1).

The addition of new types of bodies, forces, or constraints to the sys tem
merely requires the creation of an appropriate new subclass.

Currently, the user-interface is via the lisp environment; for exam-
ple, the pendulum of Fig. 3 could be built v ia the series of commands:

; create bodies and control points
(make rod "upper-rod")
(make rod "lower-rod")
(make nail "nail" 0 0 100)
; specify consfraints
(connect (endl "upper-rod") "nail")
(connect (end2 "upper-rod") (end1 "lower-rod"))
; add e~teraalforces
(g r a v i t y - o n) ; apply gravity to each body

To animate a model once the instances are made, we simply iterate
these steps:

• Simulate until end of frame (Appendix A).
• Send "draw" message to objects.
The implementat ion makes heavy use of a home-grown pack-

age of numerical routines, which include l inear-system solvers, dif-
ferential equation solvers, and the like; some useful references are
[Press et. al. 88,Golub and Van Loan 83,Ralston and Kabinowitz 78,
Boyce and Deprima 77]. We also have embedded into lisp an exten-
sion to "Einstein Summat ion Notation" for mathemat ica l expressions
[Barr 83,Misner, Thorne and Wheeler 73]; this makes it quite simple
to create lisp functions by merely typing in the mathemat ica l formulae
using the same notat ion with which we derive them.

3 I n v e r s e D y n a m i c s
If we are given the forces which act on a collection of objects, we can
easily solve the forward dynamics p rob l em- - t ha t of determining the
objects ' behavior---as described in Appendix A. However, to meet
constraints, we must solve the reverse problem: Given a partial de-
scription of the desired behavior, we must determine forces which will
yield an appropriate behavior. This inverse dynamics problem, sum-
marized in Fig. 6, consists of two pa~ts: (a) finding forces to meet a
constraint, and (b) finding forces to mainta in a constraint .

Inverse Dynamics Problem:

Given: A constraint

Find: A force:

(~)
Such tha t body moves t o

m e e t constraint, and

(b)
Such that constraint stays
met, despite motion and

other forces.

/
/ ~?~

/ j ~ ?:

gravity ~ / ~'x~it~l~
.

Figure 6: The inverse dynami¢~ problem for dynamic constraints.

Assembling a model:

a. Given 8 constraint to be met:

b. Introduce force:
constraint to.nail

~> '¢'-- force

c. Force pulls object:

d. Force slows object:

e. Constraint is met: nil

Figure 7: Meeting a Constraint. The constraint force pulls the ball towards
the nail, then brings the ball to rest at the nail.

M e e t i n g A C o n s t r a i n t
Fig. 7 shows a constraint force being used satisfy to par t (a) of the in-
verse dynamics problem, tha t of moving the objects to meet an initially
unme t constraint. Notice tha t this par t of the problem is actually very
loosely specified: How quickly should the constraint be met? Along
what pa th should the object move? For our solution, as we shall see in
Sec. 4.2, the "deviation" of the constrained point decays exponentially,
with a user-specified t ime constant .

M a i n t a i n i n g A D y n a m i c C o n s t r a i n t
Fig. 8 shows a dynamic constraint force adapt ing to satisfy part (b)
of the inverse dynamics problem, tha t of keeping a constraint me t de-
spite mot ion and other forces. There is typically a unique solution, in
which the dynamic constraint forces provide the internal forces tha t
hold together an object.

181

SIGGRAPH '88, Atlanta, August 1-5, 1988

b.

d.

constraint
force

", gravity

constraint
force

/ / / / n a i l ~ravi ty

constraint
force

I Ill I-~ ~ity
constraint

force

~ ~ k x ~ l / ! gravity

Figure 8: Maintaining a Constraint. (a-d) The constraint force adapts to
hold constraint even as object moves and other forces act on it. The con-
straint force pulls up, to counteract gravity, and sideways, to keep the pen-
dnlum's inertia from flinging it sideways off the nail.

&

Figure 9: "Point-to-nail" constraint. The "deviation" measure is
.0(30 = .~P(Y) - .~0, the constraint force is/~¢, and the constraint torque is
~ × ~ .

4 C a l c u l a t i n g C o n s t r a i n t F o r c e s
No te : We suggest skimming Appendix A, to become fa-
miliar with our notation and formulation of rigid-body me-
chanics, before reading this section.

In this section, we present the technique for computing the con-
straint forces. The presentation is in several sections:

1. Definition of several mathematical quantities associated with each
constraint.

2. Construction of a "constraint-force" equation for a dynamic con-
straint; if the constraint force is chosen such that this equation
holds, the constrained objects will behave in accordance with the
dynamic constraint.

3. Grouping the constraint-force equations for multiple constraints
into a single multidimensional constraint-force equation for all
the dynamic constraints.

4. Setting up and solving the dynamic constraint-force equation.

4 . 1 D e f i n i t i o n s
Fig. 11 gives the definition of the quantities which must be supplied for
each constraint. The derivations of these quantities for various types
of constraints are given in Appendix C.

/.~ A measure of "deviation" for the constraint:
/~(Y, t) = 0 ~ constraint is m e t

/~ is a d-dimensional vector.
d The number of dimensions of D.

/~(1) The rate of change of 1.~:

0 =- ~D(YCt)) DO)(YCt),

/~(a) is a d-dimensioned vector.
~(2) The acceleration of/~:

D(2)(y(t),.Tr(t),T(Q,O =_ d~Eq(Y(t),Q

D(2) will depend llneaxly on .~" and T; thus:

D¢,) = ~ (r~(y)P ~ + Ai(Y)~ i) +~(Y)
b o d i e s i

where we define:
r* A d × 3 matr ix corresponding to the net force on body i;

we have one such for each body in the constraint.
A ' A d x 3 m~trlx corresponding to the net torque on body i;

we have one such for each body in the constraint.

/~ The part of /3(2) independent of .~" and T; a d-dimcmsionsd
vector.

f The number of degrees of freedom in the constraint force.

G i A 3 x f matrix. The constraint force on body i is given by Gi/~c "
We have one such matr ix for eac3a body in tb, e constraint.

H i [A 3 × f matrix. The constraint torque on body i i s given by Hi.iffffc I We have one such matr ix for each body in the constraint.

Figure ii: Quaatities ~sociated with a dynamic constraint..~c is the un-
known "constraint force ~ for the constraint, y, .T, and ~" axe the st~tte, net
force, and net torque in the model, as defined in Eqn. 9 (Appendix A). See
discussion in Sec. 4.1. Derivations of these quantities for various constraints
are giVeR in Appendix C

We also define
age - - The unknown "constraint force,"

an f-dimensional vector.
- - The net external applied force on the i- th body (1)

T k - - The net external applied torque on the i-th body

Note that strictly speaking, f c is not necessarily a for_re, but rather is a
quantity that determines the constraint force (= GiFFe) and constraint
torque (= Hinge) on the constrained bodies; colloquially, however, we
refer to age as the "constraint force." The vectors f l and ~ are due
to the external forces, such as gravity, that act on tee i- th body body.

The net force (torque) on a body is the sum of the net external
force (torque) and the constraint fortes (torques):

r, : (~ G,&)+f~
.......... J (2)

e o R I l ~ l l l j

In the above equations, we label terms for the i th body with super-
script i 's, and the j t h constraint with subscript j's.

See Example 1 for a description of terms needed for a "point to
nail" constraint.

4.2 C o n s t r a i n t - f o r c e E q u a t i o n
For each constraint, we describe the desired behavior of the constraint
"deviation" by linearly combining D,/~(1), and/~(2):

13(~)(y,~,7. , t)+2130)(y, t)+ 1 l~(y,t)=O, t > t 0 (3)
7 7~ -

This equation i~ equivalent to the differential equation in Fig. 12; its
solution brings D down to 0, then holds it at 0.1 ~'Ve will substi tute for
D (2), D O) and D in Eqn. 3 to produce a linear system of equations in
which we solve for fie. If we continually adjust the force so that Eqn. 3
is met, we will be solving the inverse dynamics problem.

Thus, we expand ~(2) in Eqn. 3, using the definitions in Fig. 11,
yielding:

(r ' f ' + A'~) + g+ 2 5(" + 1_ 5 0 (4)
7" T 2 ~"

b o d i e s i

1Analytlcally, if]~0 ~ 0 the solution to the equation in Fil~. 12 asy~aptotlcal]y
approaches O, bu t doesn't ever reach/~ = O. Numerically, however, we soon reach
E'~ = 0 within error tolermaces.

182

@ ~ Computer Graphics, Volume 22, Number 4, August 1988

o .

/ ' - ; - _ .

"2o "g0 "g0 "~0 * ~o

~o = ~(..2-~o)

eo
b . c. d . e . f .

t = to t = t o + 0 . 3 ¢ t = to + 0 . 6 ~ - t = t0 + 0 . 9 ~ - t = t o + 2 . 0 ~

= - ~

g.
t > to + 6.o.r

F igure 10: Constralut-force calculation for a "point-to-nail" constraint (details in Sec. 4.2): Constraint force has components opposing gravity (- F s) , opposing
motion (-ff~), and pulling towards hall (--ffD)- (a) User specifies constraint at center of mass. (b) Constraint force ini t ial ly pulls towards nail. (c-e) Once ball
is moving towards nail, constraint force turns around. (f) Constraint force slows ball. (g) Steady-state: ffD = Z~v = O, fie = --ff#. Net force on ball is 0; by
Newton's first law, the bail remains at rest.

E x a m p l e 1: " P o i n t - t o - N a i l " C o n s t r a i n t . We choose D to be the!
vector from the constrained point, a t J~p, to the "nail", at ~0 (see Fig. 9). i
We thus have:

d = 3
~ (Y) = 2 p - 2 0

The differentiation in Appendix B.2 immediately gives us the quantities:

~o)(y) = ~p(y)

A = ~*TI-a

= b 'T l -x (L x 5) + ~ x (~ x b')

We apply an arbi trary force to the constrained point. The ~constraint force"
ff¢ is used directly as a force on the body, and it contributes ~'x ff¢ = b*ff¢
to the torque. Thus we define:

f = 3
G = i SeeAppendix Cforotherexamplea.
H = b*

Do

i n i t i a l l y ,
constraint

f f isu't met.
~ g D 0 # 0

lmcon- %. D decreases
strained % /~ov~ time.
motion %, /

%

(o,0) 4

later~
c o n s t r a i n t
i s m e t ;

to -~ 27" to -~ 4~" to -~ 6~r
t i m e

G r a p h o f s o l u t i o n t o :

~D.D+ 2 ~ D + l ~ D = O , t > t o

Figure 12: D evolving over time. We have picked a second-order differential
equation to describe D as a function of time. The solution yields the behav-
ior required by the inverse dynamics problem-- the constraint "deviation"
decays down to 0, assembling the model, then remains at 0, maintaining the
constraint. The-rate of assembly is controlled by the t ime constant r . See
[Boyce and Deprima 77] for a discussion of second-order differential equa-
tions.

S u b s t i t u t i n g Eqn. 2 in to Eqn. 4, we get the cons t ra in t - force equa t ion
for a s ingle cons t ra in t :

E x a m p l e 2: " P o l n t - t o - N a i l " C o n s t r a i n t . In Fig. 10, we i l lustrate
a simple case: A single body, with a ~point-to-nail" constraint acting at i ts
center-of-mass, and with gravity. Since both the constraint force and gravity
act on the bal rs center-of-mass, there are no rotat ional terms. Thus the
quantit ies in Example 1 reduce to:

b = b " = 4 = ~ = H =2~E = 0
L5 = X - Xo

.3(2) = ~- #
r "v

i~ = ~

Subst i tut ing into Eqn. 5 gives:

.

We easily solve for the constraint force:

Thus we see the constraint force has three components: One opposing the
force of gravity, one opposing the ball 's velocity, and one pulling the bail
towards the nail. Fig. 10 i l lustrates the constraint force adapt ing to pull the
ball to the nail, and bring it to rest. Once the ball is at rest at the nail, we
have)~ -- J~0 = 0 and ~ = 0; so the constraint force becomes ffc = - f ig ,
yielding a net force on the bali of ff = ~c + ~g = 0

coastraimt* j b o d i e s i

+ ~ ,r'~' A'~) s + = o (5)
bod| .$ 6

+ / ~ + _2r l~(r) + ~ / ~ 1

Not ice t ha t , to m e e t th is one cons t ra in t , we m u s t t ake in to accoun t
the effect of all the cons t ra in t forces.

See E x a m p l e 2 for a s amp le de r iva t ion of the cons t r a in t forces.

4.3 Mult iple Cons t ra in ts
Each cons t ra in t resu l t s in a vers ion of Eqn. 5; w i t h severa l cons t ra in t s ,
we have a set of s imu l t aneous equa t ions which m u s t be solved.

We dupl ica te Eqn . 5, for each cons t r a in t in the mode l :

coas~r&ints j bodies ,

+ ~ (r ~ + A ~) =o,{ forail
c o n s t r a i n t s k (6)

bo d i e l i

' r~ k " ~"k:

where we l abe l t e r m s for the k th cons t r a in t w i t h subsc r ip t k ' s . Wr i t -
ing th i s s y s t e m of equa t i ons more compact ly , as a m u l t i d i m e n s i o n a l
vector equa t ion , we have the cons t r a in t force e q u a t i o n for t he mode l :

1 8 3

SIGGRAPH '88, Atlanta, August 1-5, 1988
i!

where
A4~ = ~ (rkG;- + A s H i)

b2,d; e, i
7oj = F¢j (7)

bodies i

Fig. 13 illustrates collecting individual constr~nt equations into the
multidimensional vector equation. Notice that each element of A4 is a
matrix, and each element of Yc and of B is a vector.

4 . 4 S o l v i n g t h e C o n s t r a i n t - F o r c e E q u a t i o n
Fig. 15 outlines the procedure to set up Eqn. 7, as well as solve it and
compute the net force and torque on each body.

In step 3 of Fig. 15, we call a standard linear-system solver to solve
Eqn. 7. There are many well-known methods for solving linear sys-
tems (see [Press et. aI. 88,Ralston and Rabinowitz 78]). We note some
characteristics of .h4 that should be taken into account when choosing
a solution method:

• A4 is typically sparse. The [k,j]th entry in .M is non-0 only if
some body is influenced by both constraint k and constraint j .
Typically, most of the elements are zero.

• .h4 is not necessarily square. A constraint may have d ~ f ; for
example, the "orientation" constraint (Appendix C.3) has d = 1
and f -- 3, yielding a matrix which is "wider" than it is "tall."

• A4 may be singular, implying that Eqn. 7 is overconstrained or
underconstrained.2

We most often use singular-value decomposition (SVD) to solve
Eqn. 7, because it robustly handles singularity and near-singularity, as
well as non-square systems. However, SVD does not take advantage of
sparseness, and is a relatively slow technique.

U n d e r c o n s t r a l n e d E q u a t i o n s
Constraint-force equation Eqn. 7 will sometimes be underconstrained,
thus having many solutions. This can occur, for example, when there
are several constraints acting on a single body; it may be possible to
vary some of the individual constraint forces without affecting the net
torque or force on the object. An example is shown in Fig. 14a, in
which the pair of forces labeled "V" yield the same net force (= 21Yv)
and torque (= 0) as the pair labeled "W".

There is no difficulty caused by having many solutions to Eqn. 7; we
could use any solution, since they will all yield satisfactory behavior.
We might wish to use the solution which is smallest in magnitude, to
avoid numerical difficulties; SVD yields this solution.

O v e r e o n s t r a i n e d E q u a t i o n s

eats In Fig. 14b, the user has specified constraints which can not be
met; there is no "correct" constraint force to be applied. In Fig. 14c,
the specified constraints can be met, but not by moving the constrained
point in a straight line; however, Eqn. 3 requires that the point move
in straight line if the constrained point is initially at rest. s

For overconstrained systems, using the least-squares solution for
the constraint forces typically yields "reasonable" behavior - the ob-
ject typically assumes some intermediate configuration, for the case of
Fig. 14b, or moves along the feasible path, for the case of Fig. 14e.
SVD computes the least-squares solution for overconstrained systems.

5 S u m m a r y
We have developed a modeling system featuring constraint-based con-
trol of rigid bodies. The bodies' behavior is determined by simulation
of Newtonian mechanics. We compute dynamic "constraint forces" to
apply to the bodies such that they behave in accordance with user-
specified geometric constraints; the computation of these forces is an
inverse dynamics problem.

The modeling system supports various types of geometric con-
straints, such as "point-to-nail" and "point-to-point." The modeler
builds objects by using constraints to connect primitive components;
the constraint forces cause the components to assemble themselves into
the model, and ensure that the model stays assembled as it animates.

2Unfortu_r~tely, we have some ove r load ing o f t he w o r d " c o n s t r a i r t ' : "overcon-
strained" and "underconstrained" refer to the linear system of equations Eqn. 7",
rather than to the constraints themselves.

3A so lu t ion to the problcxn of unrealizable paths is to use scalar constraint men-
mares (d m 1}. For example, the "point-tc-nall" constraint could be redefined so
that D is the distance from the point to the nail, rather thart the vector separating
the po i n t a n d the nail.

nail

/ 0

LM , M,.j LF oj -r L ,j _

A4.~ + B = 0

Figure 13: Multiple constraints: Each constraint c o n t r i b u t e s o n e line to the
equation. The collection of constraints together yields a set of simultaneous
linear equations, expressible a~ a linear matrix equation.

°%.
, .

u.d tr~od ~11"

b. h a l l

O v e r c o x m t r a i : ~ <]::::=? =

¢ .

O v e r c o ~ s t r a i n e d

phys i ca l l y
' ~ " x r e a l i z a b l e

, k ~ a t h

/ p.t~_y: ",,\.

Figure 14: Under- and Overconstralned systems. (a) Underconstrained:
Forces "V" and "W" yield the same net force. (b) Overconstrained: There
is no way to meet both constraints. (c) Overconsttained: Both constraints
could be met, b u t n o t via the path we have chosen.

We have developed a technique to compute the constraint forces by
setting up and solving a "constraint-force equation." The constraint-
force equation is a multidimensional linear equation of the form
.A4.T'¢ + /3 -- 0, where .~c is the collection of unknown constraint forces.

Each constraint is described by a "deviation" measure Jg, such t h a t
/) = 0 when the constraint is met. D must be a twice differentiable
function of the positions and orientations of the constrained bodies.
Appendix C derives/~ for several types of constraints.

6 F u t u r e W o r k
Further work we are interested in pursuing includes:

* Expanding the constraint library. Deriving new constraint "devi-
ation" functions, as described in Appendix C.

• Interact ive graphical modeler.
• Object Intersect ion. Development of non-interpenetration con-

straints
• Flexible bodies. Incorporation of flexible-body simula-

tion with dynamic constraint eontrol [Platt and Burr 88,
Terzopoulos, Platt, Fleischer, and Burr 87].

• Special-case models Direct implementation of the equations of
motion for common objects, such as the linked systems of
[Issues and Cohen 87,Arrr~strong and Green 85]. Decreeing the
number of constraints in the model speeds up the constralnt-force
calculation.

• Constraints on velocity or acceleration.

We are also looking forward to using the dynamic constraints mod-
eling system as a tool in other research areas, such as molecular biology
[Lengyel 87] and robotics.

184

@ Computer Graphics, Volume 22, Number 4, August 1988

PROCEDURE TO COMPUTE FORCE AND TORQUE ON EACH BODY:

; 1. Compute net explicit forces and torques
for each body i

:for each explicit ~orce j on body i

compute force ~si

F~ ÷ = F E j .
T~ += bi x FEj

end
"for each explicit torque j on body i

compute torque TEi
T~ +=TE~

end
end
; 2. Set up constraint.force equation
initialize 2¢~ to 0
for each constraint k

compute ~k, D; 1), and D~
S[k] = ~ + 2 130) + L/3~

~ r k
¢or each body i in constraint k

compute r% ~td A~ ..

B[k] += F'kF'E + A~T'E
for each constraint j ac~in$ on i

.A~ [k, j] + i i =]2~Gj + A~H~
end

end
end
; $. Solve constraint-force equation (Eqn. 7)
.To = s o l v e (. M , B) ;linear-system solver
; ~. Compute net forces and torques.
for each body i

:for each constraint j acting on i

end
end

Figure 15: The procedure to compute the coustralnt forces and the net force
and torque on each body. See discussion in Sec. 4.4. Note tha t the [k , j] t h
clement of ~ is a dk × f j matrix, and the [k i t h element of B is a
dk-dimensional vector. Rather than implementing 2¢1 as a "nested" array,
it can be flattened into a (~ d) × (~ f) array; similarly, B is formed by
concatenating the individual vectors into one (~ d)-dimensional vector.

R e f e r e n c e s
[Armstrong and Green 85] Armstrong, Will iam W., and Mark W. Green,

The dynamics of articulated rigid bodies for purposes of animation, in
V i s u a l C o m p u t e r , Springer-Voting, 1985, pp. 231-240.

[BaH 83] Barr, Alan It., Geometric Modeling and Fluid Dynamic Analysis
of Swimming Spermatozoa, Ph.D. Dissertation, Rensselasr Polytechnic
Insti tute, 1983

[BaH 88] Barr, Alan H., Topics in Physically Based Modeling, to appear,
Addison Wesley

[Barr, Von Herzen, Barrel, ~nd Snyder 87] Barr, Alan H., Brian Von
Herren, Rouen Barrel, and John Snyder, Computational Techniques
.for the Self Assembly of Large Space Structures Proceedings of the 8th
Princeton/SSI Conference on Space Manufacturing, Princeton New
Jersey, May 6-9 1987, to be published by the Ametica~ Inst i tute of
Aeronautics and Astronautics.

[Boyce and Deprima 77] Boycu, Wil l iam E., and DiPrima, Richard C., El -
e m e n t a r y D i f f e r e n t i a l E q u a t i o n s a n d B o u n d a r y V a l u e P r o b -
l e m s , John Wiley 8z Sons, New York, 1977.

[Caltech '87 Demo Reel/ Caltech studies in .modeling and motion (video-
tape), in SIGGRAPH video Review #28, Visualization in Scientific
Computing Computer Graphics, volume 21 number 6. ACM SIC-
GRAPH, 1987

[Fox 67] Fox, E.A., Mechan ies~ Harper and Row, New York, 1967
[Gear 71] Gear, C. William, N u m e r i c a l I n i t i a l V a l u e P r o b l e m s in Or -

d i n a r y D i f f e r e n t i a l E q u a t i o n s , Prentice-Hall, Englewood Cliffs,
NJ, 1971

[Goldstein 83] Goldstein, Herbert, C l a s s i c a l M e c h a n i c s , 2rid edition,
Addison-Wesley, Reading, Massachusetts, 1983.

[Golub and Van Loan 83] Golub, G., and Van Loan, C., Matrix Compu-
tatlons, Johns Hopkins University Press, Baltimore, 1983.

State variables of a body:
m - Mass of the body
I - Rotat ional inert ia tensor of the body

- Position of the body
R - Orientation of the body
!~ - Momentum of the body

- Angular Momentum of the body,

a u x_//Jary variables:
= 1_ t7 - Velocity of the body
= I~-1~ - Angular velocity of the body,

THE EQUATIONS OF MOTION:

~/7= ff • R = w'R

where:
ff = net force on the body, and
2 g = net torque of the body.

Note: w" is the dual of ~ (see Appendix B.1).

F igu re 16: Summary of the equations of motion of a rigid body.

[Isaacs and Cohen 87] Isaacs, Paul M. and Michael F. Cohen, Controlling
Dynamic Simulation with Kinematic Constraints, Behavior Functions,
and Inverse Dynamics, Proc. SIGGRAPH 1987, pp. 215-224

[Lengyel 87] Lengyel, Jed, Dynamic Assembly and Behavioral Simulation of
the Flagellar Axoneme, in C a l t e t h S U I t F R e p o r t s , 1987

[Lien and Kajiya 84] Lien, Sheue-ling, and James T. Kajiya, A symbolic
method for calculating the integral properties of arbitrary nonconvex
polyhedra, IEEE Computer Graphics and Applications, Vol. 4 No. 10,
Oct. 1984, pp. 35-41.

[Misae~, Thorne and Wheder 73] Misner, Charles W., Kip S. Thorae, and
John Archibald Wheeler, Gravitation, W.H. Freeman and Co., San
Francisco, 1973.

[Press et. al. 88] Press, William II., Brian P. Flannery, Saul A. Teukolsky,
and Wil]iam T. Vetterllng, N u m e r i c a l R e c i p e s in C / T h e .Art
o f Sc ien t i f i c C o m p u t i n g , Cambridge University Press, Cambridge,
1988.

[Platt and Burr 88] Platt , John, and Alan Barfs Constraints on Flexible Ob-
jects, Submitted to SIGGRAPt t 1988.

[Ralston and Rabinowitz 78] Ralston, Anthony, and Philip Rabinowitz, A
First Course in Numerical Analysis, McGraw-Hill, New York, 1978.

[Shoemake 85] Shoemake, Ken, Animating Rotation with Quaternion
Gurves, Computer Graphics, Vol. 19 No, 3, July 1985. pp. 245-254.

[Terzopoulos, Plat t , Fleischer, and BaH 87] Terzoponlos, Demetri, John
Platt , Alan BaH, and Kurt Fleischer Elastically Deformable Models,
Proc. SIGGKAPtt , 1987, pp. 205-214.

[Witkin, Fie;sober, and Burr 87] Witkin, Andrew, Kurt Pie;sober, and Alan
Burr, Energy Constraints on Parametrized Models, Proc. S IGGRAPt t
1987, pp. 225-232

~Wilhelms and Bazsky 85] Wilbelms, Jane, and BxSan Barsky Usin9 Dy-
namic Analysis To Animate Articulated Bodies Such As Humans and
Robots, Graphics Interface, 1985.

A p p e n d i c e s :

A S i m u l a t i n g N e w t o n ; a n M e c h a n i c s
Fig. 16 summarizes the equations of motion of a rigid body. A full discussion
of rigid-body dynamics can be found in [Fox 67,Goldstein 83].

A.1 No te s On T h e Equa t ions Of Mot io n
The Orientation Matrix R : I t transforms tensors from body-
coordinates to world coordinates (see Fig. 17). As we numerically
integrate R, numerical noise tends to cause I t to drift away from a
pure rotation, yielding noticeable skewing. This can be alleviated by
using a feedback technique, aa in [Burr 83]. Alternatively, we can rep-
resent the orientation as a quaternion Q (see [Shoemake 85] for an
introduction to quaternions). The equation of motion for Q is (see
[Misner, Thorne aald Wheeler 73]):

d 1 .
~Q = ~wq

We then define R to be an auxiliary variable, which is computed from
Q as discussed in [Shoemake 85].

• Rotational Inert ia Tensor I: I determines the rotat ional behavior o f a.

body. 4 For • rigid body, Ibody is constant. Note also tha t in Fig. 16

4A discussion of the dmwacterstics of I is beyond the scope of this paper; see
[Fox 67,Goldsteln 83]. [Lien and Kailya 84] t ires an algorithm to compute I for
arbitrary aonconvex polyhed.ra.

185

SIGGRAPH '88, Atlanta, August 1-5, 1988

(0 o , l ~ x

Body coordinates

Poin~ "P"

y
(o,o,o) x

World coordinates

Figure 17: A rigid body. Orientat ion matr ix R t ransforms vectors from
body coordinates to world coordinates.

we use I -a ra ther than I. IEo~ can be precomputed for each body; we
convert to world coordinates using R:

i -~ = RI~o~a~R T

• The Net Force f f and Torque ~: Euler 's principle of superposit ion
allows us to combine the force• applied to a body into an equivalent
net force applied at the center of mass. Each force applied a t a radius

from the center of mass contributes b x -f to the net torque on the
body; we can also have "pure torques" acting on the body. The net
force and torque are thus:

:=E:,
forces i

= ~ (~,×:,)+ ~ ~,
forces i torques j

A.2 Canonical O.D.E. Nota t ion
For brevity, we express the collection of equations in Fig. 16 as an ordinary
differential equation (O.D.E.), in canonical form. For a single body, which
we label A, we have: ~tYA = .f(yA, -fA, :A) (8)

where we define

yA = { ~ A RA~A,~A} - - S t a t e of body A

-fA - - N e t force on A
~A - - N e t torque on A

For a model consisting of a collection of bodies, we have:
d
~ Y = I(Y, ~, ~) (9)

where we define

y
~c

T

= {yA, y B , . . . } - - S t a t e of the model
= {ffA,_fiB,. . .} - -Forces in the model
= {~A, : B } - -Torques in the model

Numerical methods for solving first-order O.D.E. 's are well known (see
[Press et. al. 88,Boyce and Deprima 77,Ralston and Rabinowitz 78]).
When the equations are not stiff (stiff differential equations occur when there
are multiple widely varying t ime constants for the solutions), an adaptive
Adams predictor corrector is suitable; otherwise we recommend a method
such as Gear 's Method ([Gear 71]).

B M a t h e m a t i c a l D e t a i l s

B.1 Dual of a vector
The dual of a vector b is the ant isymmetr ic matr ix b°:

b~ , define b* = - h a 0 b~
ba b~ -ha 0

For any vectors b and g, we have the following identities:

b ' ~ ~ b x ~
b*TE _~xg

b'Tb ~ 0

B.2 Behavior o f a Point
Consider a point u p , which is fixed relative to a rigid body (Fig. 17). We
define bbod~ to be the vector from the center-of-mass of the body to F, ex-
pressed in the body ' s home coordinates; since the point is fixed, gbod~ is
constant . We would like to derive expressions for the position, velocity, and
acceleration of P .

We will need to know the derivative of 1-1 . Remember t ha t since the
body is rigid, 1-1 is constant : body

1-1 = RI~o~ 1L T
a -a T -1 a T ~tI-1 = (~/R')I~avIt + RIt'av(~TR~ ') (10)

= ,~*RI~o~R T + R I ~ o ~ R T w * /

= ov*1-1 + I - l w *T

We have subst i tuted w*Pt. for ~ R , according to the equations of motion
(Appendix A).

We will also need the derivative of ~:

= (~I-I).., + l-aN '
= w . i _ ~ + i _ l w , T ~ + i _ a ~ (11)

= ,o'zz + I -~('T/ , + C')
= I-a(~ x ~ + Cff)

We have subst i tuted ~ for ~-tL according to the equations of motion.
We can now differentiate b:

= Rbb~2, and

= w * I t b ~

=~xg
~ = (lz)

(~) × ~ + ~ × (~ × g)
= (i -~ (~ × ~ + P)) x g + ~ × (~ × ~)

(b*TI-:t)Cff + (b*TI -a (..g x ~) + ~ x (~ x b))
= H : + 3

where we define
H = b*TI -~

= b ' T l - ~ (L x ~) + ~ x (~ x b ")

We have again subst i tuted ~a*R for ~II.
Finally, we can express the positio~, velocity, and acceleration of point P

terms of the s ta te of the body and the net force and torque on the body:
Xp = X + E
% = ~ g g .

= ~.¢+ ~
= ~7+o~ x b

d •

= - ~ + H : + 3

where we define
G =-~

(is)

C C o n s t r a i n t D e r i v a t i o n s
For each type of constraint , we must derive expressions for the various quan-
tities defined in Fig. 11. The steps we follow are:

1. Choose a simple "devlation" measure /~. ~ is a funct ion of the po-
sitions (~) and orientat ions (R) of the constrained bodies, and may
optionally depend on t.

2. Differentiate D, to derive ~(x)(~, t); Subst i tu te ~ and w*R for the a~X
and ~/.R terms which win arise (see Fig. 11).

3. Differentiate again, to derive /~(2/(y, if, ~ , t). Replace ~¢ff and ~/L

terms with - f and T, thus giving rise to the l inear dependence of/~(2)
on the forces and torques. Define the d × 3 matr ices r , A, and the
d-vector ff

4. Choose where to apply the constraint forces needed to meet the con-
straint . Most often, we apply a vector force to a fixed location of the
constrained body; in this case, we have f = 3 degrees of freedom.

5. Use steps 2 and 3 to derive G and H for each body. These convert t h e
f values in the ~constralnt force" fie into the actual forces and torques
on the bodies.

Often, some of the quanti t ies r , A, G, and H , which are nominal ly matr i -
ces, tu rn out to be scalar. Scalars can be handled as a special case in the
implementation, or scaled identity matrices can be used.

We give examples of the constraint derivations for the constraints illus-
t ra ted in Sec. 2.2.

1 8 6

@ ~ Computer Graphics, Volume 22, Number 4, August 1988

- ~
(a)

Figure 18: (a) "Point-to-point" constraint. We apply equal-and-
opposites to the two constrained points, to cause the deviation function
/)(Y) = - ~ P ~ (Y) - ~.Pi(Y) to go to 0. (b) ~Orientation" constraint. We
rotate the body to cause the deviation function ~(y) = b'..P7 - 1 to go to
O. The constraint torque is given directly by J% there is no force due to the
constraint.

C.1 " P o i n t - T o - P a t h " C o n s t r a i n t
This constraint is met a t a t ime t if the constrained point "P" is on the path,
at xPa th (t) ; i t is the same as the "point-to-nail" constraint (Example 1 in
Sec. 4) but with a nail tha t moves. Thus several terms have a dependency
on v~path:

f i (y , t) = X.p(Y) -- Xpath(=)

~ (Y , P, ~', 0 = ~P(Y, ~, ~) - ~ £p~t~ (0
=b*T i - l (/~ x ~) + ~ x (3 x b)

a ~' .Tpath, -
- ~ t t)

C . 2 " P o i n t - T o - P o i n t " C o n s t r a i n t
This constraint is met if the two constrained points "PI" and "P~" are a t
the same location (Fig. 18a). We thus define ~ to be the vector separat ing
the two points. The derivation proceeds analogously to tha t of the "point-
to-nail" constraint:

g(y) = Xe~ (y) - £p~ (y)
~ (~) (Y) = g P A Y) - vp~ (y)
~(~)(y, : ,~) = ~ p , (y) - g p ~ (y)

r 1 = _!.-1
h 1 = C~IT I~ I
p2 = _ A _ 1

A ~ = - ~ r i~1

To be in keeping with Newton's third law, the two bodies must exert
equal and opposite forces on each other. We apply an arbitrary force, Fc,
to one of the constrained points, and the negation of tha t force, --/~¢, to the
other. We thus have f = 3, and define

G 1 = 1; H 1 = b~
G 2 = - 1 ; H 2 = - b ~

C.3 " O r i e n t a t i o n " C o n s t r a i n t
This constraint is met if a specified unit vector 5 fixed in the body lines up
with a unit vector 2q fixed in the world (see Fig. 18b). We could define D to
be the angle between the vectors; i t easier, however, if we define D to be 0
wken the cosine of the angle (i.e. the dot-product of the vectors) is 1. Thus
we have d = 1, and:

D(1)(y) (~b (Y)) .
D(u)(y ,T) (~ (y)) . N

((b ' ~ I - x) f) -
+(b TI-'(Z × ~) + ~ × (~ × 5)).

r = 0
A. = N T b * T I - ~

/~ = (b ' T I - l ([x ~) + 3 x (3 x b)) . ~

Notice t h a t / k is a I x 3 matrix, and fl is a scalar.
We apply an arbi trary pure torque, ~c, to the body, and no force. We

therefore have f = 3, and

G = 0 ; H a l

Notice tha t this constraint is "non-square" - we are applying 3 degrees
of freedom to affect a scalar constraint "deviation."

F igure 19: Linking Chain between Two Towers. The chain swings natural ly
after assembly.

F igu re 20: Linking Chain between Two Towers, continued

D A c k n o w l e d g e m e n t s

T h a n k s to: J ed Lengyel , for be ing a "gu inea pig" user of the m o d e l i n g
sys t em, and for p u t t i n g toge the r the v ideo s y s t e m t h a t was used in
m a k i n g an ima t ions ; J o h n Snyder , for the render ing of the an ima t ions ;
J o h n P l a t t , for d iscuss ions and for numer i ca l software; a n d Br ian Von
Herzen, for the m o t i v a t i o n and m o d e l i n g for the Harwood space - s t a t i on
se l f -assembly a n i m a t i o n s and for the po lygona l p lay ing card models .

F igu re 21: Linking Chain between Two Towers, continued

187

SIGGRAPH '88, Atlanta, August 1-5, 1988

Figure 22: Space Station Assembly. The modules are assembled via "ori-
entation", "point-to-point", and "point-to-nail" constraints. The constraint
forces determine the strengths of the rocket thrusts.

Figure 23: Space Station Assembly, continued.

Figure 24: Caxdhouse Assembly. We use ~point-to~point, ~ and Upt~to~
plane" constraints to assemble a cardhouse.

Figure 25: Caxdho~se Assembly, completed.

Figure 26: Pandora's Chain. The chain links are instructed to connect
togetherand hook to a trap door. Torsion springs keep the links roughly
perpendicular to each other. Gravity and viscous damping axe applied to all
bodies. The chains and trap door swing naturally once they axe assembled.

188

