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Abstract 
We present "dynamic constraints," a physically-based technique for 
constraint-based control of computer  graphics models. Using dynamic 
constraints, we build objects by specifying geometric constraints; the 
models assemble themselves as the elements move to satisfy the  con- 
straints.  The  individual elements are rigid bodies which act in ac- 
cordance with the  rules of physics, and can thus  exhibit physically 
realistic behavior. To implement the constraints,  a set of "constraint 
forces" is found, which causes the  bodies to act in accordance with the 
constraints; finding these "constraint forces" is an inverse  dynamics  
problem. 

KEYWORDS:  Modeling, Dynamics,  Constraints,  Simulation 
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1 Introduction 
Some of the most  natural  and graceful motion in computer  anima- 
tion has been achieved recently by simulating the  physical behavior 
of objects. But physical simulation has not  yet become the s tandard  
technique for modeling and animation,  because of several limitations: 

• S imu la t i ons  are hard to imp lemen t :  Typically, a special-purpose 
program is writ ten to simulate the  behavior of a given computer  
graphics model; the overhead for making new models is large. 

• S imu la t ions  are hard to control: If "innate" behavior is pro- 
g rammed into models, it becomes hard to make the  models do 
exactly what  we want; the behavior is often determined indirectly 
by non-intuitive or non-orthogonal parameters .  

i S imu la t i ons  are slow: Physical s imulation can be computat ionally 
intensive. 

The  goal of this work is to develop a modeling sys tem in which it is 
easy to build and animate physically-based computer  graphics models. 
To this end, our modeling approach is based on four features: 

• Generali ty:  A model is built from a collection of primitive 
physically-based elements. 

• Geometr i c  Constrain ts :  A model is constructed by applying con- 
s t raints  to the  objects, s tar t ing from an initial configuration of 
the primitive elements. A model is also positioned and  animated 
through constraints.  

• N e w t o n i a n  Mechanics:  Each primitive element is a rigid body 
whose motion is due to the  effects of  inertia and forces and torques 
acting on the body. Many of the  forces and torques are externally 
applied; other forces and torques, however, are derived from the 
geometric constraints.  

• Equivalence o f  Model ing  and A n i m a t i o n :  The temporal  behavior 
of physically based objects is bound up in the model itself. 

To implement the constraints,  we solve an inverse  dynamics  prob- 
lem: given constraints on the  behavior of the  model, the  problem is 
to determine the  forces which result in an example of the constrained 
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Figure 1: All primitive bodies obey Newton's laws. e.g. (a) A ball released 
in gravity falls; (b) A ball thrown in gravity moves in an arc. 

behavior we desire. Thus ,  we convert each constraint  into a "constraint 
force"; as the model animates,  the constr~.int forces are continuously 
computed,  to continuously mainta in  the constraints.  

Sec. 2 of  this paper presents the modeling system,  and  provides 
implementat ion notes. Sec. 3 discusses the  inverse dynamics problem. 
See. 4 presents the technique for set t ing up and solving a "constraint- 
force" equation. The  simulation of Newtonian mechanics, derivations 
for various examples of  constraints,  and miscellaneous mathemat ica l  
details are found in the Appendices.  
R e l a t e d  W o r k  
[Witkin, Fleischer, and Barr 87] uses "energy" constraints  to assem- 
ble 3D models, for changing the  shape of parametricaily-defined 
primitive objects. This  work is not  concerned with dynamic me- 
chanical simulation of models. [Platt and Barr 88] uses augmented  
lagrangian constraints  in the physical simulation of flexible ob- 
jects. [Isaacs and Cohen 87] does physical s imulation of rigid bod- 
ies, for the  special ease of linked sys tems  without  closed kinematic 
loops. They  share our emphasis  on ease of modeling, and also 
use an inverse-dynamics formulation to control the  models '  behavior. 
[Wilhelms and Barsky 85] utilizes physically based modeling, bu t  has  
a reduced emphasis  on control. 

2 The Modeling System 
Modeling with the  "Dynamic Constraints"  sys tem consists of instan- 
t iat ing primitive bodies, connecting and controlling them with con- 
straints,  and influencing their behavior by explicitly applying external 
forces. The  modeling sys tem thus  has  three libraries: 

• Pr im i t i v e  bodies: A collection of rigid .bodies, such as spheres, 
rods, torii, and more complex shapes,  tha t  are the component  
elements of  models. The  modeler specifies the  body  density, as 
well as specific parameters  such as t h e  length and radius of  a 
rod. Each body  type defines the quantit ies needed for physical 
simulation, such as the  rotational inertia tensor for tha t  body 
type. 

• E x l e r n a l  applied forces: Forces tha t  the  modeler can introduce 
into the  model, including gravity, springs, and damping forces. 
Each force has parameters  specific to the  force, such as damping  
coefficients or spring constants.  

• Cons tra in ts :  Various types of geometric constraints,  such as 
: 'point-t~nail" or "orientat ion" are described below. 

To build a model, we make instances of  objects, calculate the forces, 
and run the  simulation. We also specify "timelines" of  events to take 
place, such as creating or removing instances,  turning constraints  or 
explicit forces on or off, or otherwise adjust ing parameters .  

2 . 1  N e w t o n i a n  M e c h a n i c s  
Fig. 1 illustrates one of the  simplest  examples of a body obeying New- 
ton 's  laws. This  behavior is easy to simulate: Appendix  A describes 
the general newtonian simulation procedure. 
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Figure 2: "Point-to-nail" constraint. A user creates a pendulum by fix- 
ing an endpoint of a rod at some location in space. The constraint causes 
the rod to "fly" into place, assembling the pendulum. See videotape 
[Caltech '87 Demo Reel]. 

All primitive bodies in our sys tem exhibit  physically realistic her 
havior, in the  sense tha t  they  respond correctly to forces and torques. 

2 . 2  C o n s t r a i n t s  
We show some examples of constraints  supported by our modeling sys- 
tem. 

• "Point-to-Nail" constraint  (see Fig, 2): This  fixes a point on a 
body to a user-specified location in space. The  body may  swivel 
and swing about  the  constrained point,  bu t  the  constrained point 
may not  move. 

• "Point-to-Point" constraint  (see Fig. 3): This  forms a joint  be- 
tween two bodies. The  bodies may  move about freely, as long as 
the two constrained points s tay in contact.  

• "Point- to-Path" constraint (see Fig. 4a): We can require a point 
on an object to follow an arbitrary user-specified path;  this  al- 
lows us to animate  models by using s tandard  kinematic keyframe 
techniques. 

• "Orientation" constraint  (see Fig. 4b): A constraint  to align ob- 
jects by rotat ing them. 

• Other  constraints (not illustrated): Other  constraints  include 
"point-on-line," which restricts a point to lie on a given line, and 
"sphere-to-sphere, 'j which requires two spheres to touch, but  lets 
t hem slide along each other. 

We can easily add new types of geometric constraints  to our con- 
straint  library, by defining the constraint "deviation" function and de- 
riving various required quantities, as described in Appendix  C. The  
only restriction is tha t  the "deviation" function be twice-differentiable 
(as is discussed in the  appendix).  

2 . 3  C o n s t r a i n t  F o r c e s  
When we have built a model using dynamic constraints,  the  model is 
held together by constraint  forces, as i l lustrated in Fig. 5. Thus  the 
constraint forces are analogs of the internal forces which hold the parts  
of compound objects together.  

Constraint  forces also assemble the  models,  pulling the com- 
ponents  into the proper configurations. Thus  constraint  forces 
represent forces which could be used to assemble real-world ob- 
jects. For example, figures in the appendices show frames from 
animations demonst ra t ing  the  self-assembly of space s t ructures  
[Burr, Von Herren, Barrel, and Snyder 87]. 

a. Pendulum of / n / n i l  

Fig. 2d, and a sec- 
ond rod: 

b. User constrains 

f 

ends of rods: 

stays  ~natl 

c. Ends of rods fly f..xe/d~{ 
together: / / / / . ~ f  

d. Introduce gray- 

~nail 
s t a y s  ~ I[ f i x e d ~  

gravity 
~---~ 

 fj" 

ity; Compound 
pendulum swings: 

Figure 3: A "point-to-point ~ constraint. A users adds a second rod to 
the pendulum of Fig. 2, to create a compound pendulum. See videotape 
[Caltech '87 Demo Reel]. 

Figure 4: Other constraint examples. (a) "Point-tc-path ~ constraint. This 
constraint pulls objects along user-specified paths. (b) "Orientation" con- 
straint. We rotate the rod to make its axis parallel to the slot axis. 

2 . 4  I m p l e m e n t a t i o n  
We describe here the  high-level program structure;  details of  simulat-  
ing Newtonian mechanics are given in Appendix  A, the  procedure to 
calculate the  constraint  forces is given in Sec. 4.4. 

Our modeling sys tem is implemented in C o m m o n  Lisp on Symbolics 
Lisp Machines, using Symbolics'  object-oriented "Flavors" mechanism.  
The  fundamenta l  object classes we have defined are: 

• r ig id-body:  a primitive body in the  model. This  class defines the  
functions and s ta te  variables needed for the  dynamics  calculation 
(see Appendix  A), including a list of forces and  torques act ing 
on the body. There  are subclasses for each type of body  in our 
library; each subclass provides type-specific information,  such as 
the  rotat ional  inertia tensor. 

• con t ro l -po in t :  a point on a body, or in space. A point on a body  
contains a reference to the  body, as well as the  posit ion of the  
point in body-coordinates.  A point  in space defines its position, 
which can be constant ,  or a funct ion of t ime. Forces and  con- 
s t ra ints  are typically created by specifying the  control-points at 
which they act. 

• f o rce :  a force being applied to a body. Each force contains a 
reference to a control point at which it is applied. There  a r e  
subclasses for each type of force in our library; each subclass 
provides a funct ion tha t  computes  the  force. 

• c o n s t r a i n t :  any type of dynamic  constraint .  There are subclasses 
for each type of constraint  in our library. Each subclass  provides 
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Figure 5: Constraint forces holding together compound pendulum of Fig. 3d. 
The constraint forces model the internai forces of a real-world pendulum. (a) 
shows forces on the upper rod, (b) shows forces on the lower rod: .Fg is gravity 
pulling down on rods. F1 is the "point-to-nail ~ constraint force on the upper 
rod, holding it at the nail. F2 is the "point-to-point" constraint force on the 
lower rod, holding it to the upper rod; -F2  is the reaction force on the upper 
rod. 

the quanti t ies needed to determine the  constraint force (described 
in Appendix  C). Each constraint  also keeps references to the 
bodies being constrained, and associates the  appropriate forces 
with the  bodies. 

All objects handle a "draw" message, which displays the  object in 
its current state.  For debugging a model, we send the "draw" mes- 
sage to all objects, including forces, control points,  and constraints; for 
producing an animation,  we send the "draw" message only to bodies. 

Some examples of subclasses are: 
• rod: a subclass of  rigid-body. This  class provides the  values spe- 

cific to rods, e.g. the  rotational inertia tensor (see Appendix  A). 
The  c l ~  also associates two control points  with each rod, named 
"endl"  and "end2", at the  ends of the  rod, and provides functions 
to access them. 

• nail: a control point fixed at  a location in space. 
• point-to-nail: a subclass  of constraint. Provides the functions 

which calculate the  terms needed for a "point-to-nail" constraint  
(see Sec. 4, Example 1). 

The  addition of new types of bodies, forces, or constraints  to the  sys tem 
merely requires the creation of an appropriate new subclass.  

Currently, the user-interface is via the  lisp environment;  for exam- 
ple, the pendulum of Fig. 3 could be built  v ia  the series of commands:  

; create bodies and control points 
(make rod "upper-rod") 
(make rod "lower-rod") 
(make nail "nail" 0 0 100) 
; specify consfraints 
(connect (endl "upper-rod" ) "nail") 
(connect (end2 "upper-rod") (end1 "lower-rod")) 
; add e~teraalforces 
( g r a v i t y - o n )  ; apply gravity to each body 

To animate  a model  once the  instances are made,  we simply iterate 
these steps: 

• Simulate until  end of frame (Appendix A). 
• Send "draw" message to objects. 
The  implementat ion makes heavy use of a home-grown pack- 

age of numerical  routines, which include l inear-system solvers, dif- 
ferential equation solvers, and the  like; some useful references are 
[Press et. al. 88,Golub and Van Loan 83,Ralston and  Kabinowitz 78, 
Boyce and Deprima 77]. We also have embedded into lisp an exten- 
sion to "Einstein Summat ion  Notation" for mathemat ica l  expressions 
[Barr 83,Misner, Thorne  and  Wheeler 73]; this  makes it quite simple 
to create lisp functions by merely typing in the mathemat ica l  formulae 
using the  same notat ion with which we derive them.  

3 I n v e r s e  D y n a m i c s  
If we are given the forces which act on a collection of objects, we can 
easily solve the  forward dynamics p rob l em- - t ha t  of  determining the  
objects '  behavior---as described in Appendix  A. However, to meet 
constraints, we must solve the reverse problem: Given a partial de- 
scription of the desired behavior, we must determine forces which will 
yield an appropriate behavior. This  inverse dynamics problem, sum- 
marized in Fig. 6, consists of two pa~ts: (a) finding forces to meet  a 
constraint,  and (b) finding forces to mainta in  a constraint .  

Inverse Dynamics Problem: 

Given: A constraint 

Find: A force: 

(~) 
Such tha t  body moves t o  

m e e t  constraint, and 

(b) 
Such that  constraint stays 
met, despite motion and 

other forces. 

/ 
/ ~?~ 

/ j ~  ?: ......... 

gravity ~ / ~'x~it~l~ 
. . . . . . . .  . .  

Figure 6: The inverse dynami¢~ problem for dynamic constraints. 

Assembling a model: 

a. Given 8 constraint to be met: 

b. Introduce force: 
constraint to.nail 

~> '¢'-- force 

c. Force pulls object: 

d. Force slows object: 

e. Constraint is met:  nil 

Figure 7: Meeting a Constraint. The constraint force pulls the ball towards 
the nail, then brings the ball to rest at the nail. 

M e e t i n g  A C o n s t r a i n t  
Fig. 7 shows a constraint  force being used satisfy to par t  (a) of  the  in- 
verse dynamics  problem, tha t  of  moving the  objects to meet  an  initially 
unme t  constraint.  Notice tha t  this  par t  of the problem is actually very 
loosely specified: How quickly should the  constraint  be met?  Along 
what  pa th  should the  object move? For our solution, as we shall see in 
Sec. 4.2, the  "deviation" of the  constrained point decays exponentially, 
with a user-specified t ime constant .  

M a i n t a i n i n g  A D y n a m i c  C o n s t r a i n t  
Fig. 8 shows a dynamic constraint  force adapt ing  to satisfy part  (b) 
of  the  inverse dynamics  problem, tha t  of  keeping a constraint  me t  de- 
spite mot ion and  other forces. There is typically a unique solution, in 
which the  dynamic  constraint  forces provide the  internal forces tha t  
hold together an object. 
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Figure 8: Maintaining a Constraint. (a-d) The constraint force adapts to 
hold constraint even as object moves and other forces act on it. The con- 
straint force pulls up, to counteract gravity, and sideways, to keep the pen- 
dnlum's inertia from flinging it sideways off the nail. 

& 

Figure 9: "Point-to-nail" constraint. The "deviation" measure is 
.0(30 = .~P(Y) - .~0, the constraint force is/~¢, and the constraint torque is 
~ × ~ .  

4 C a l c u l a t i n g  C o n s t r a i n t  F o r c e s  
No te :  We suggest skimming Appendix A, to become fa- 
miliar with our notation and formulation of rigid-body me- 
chanics, before reading this section. 

In this section, we present the technique for computing the con- 
straint forces. The presentation is in several sections: 

1. Definition of several mathematical  quantities associated with each 
constraint. 

2. Construction of a "constraint-force" equation for a dynamic con- 
straint; if the constraint force is chosen such that  this equation 
holds, the constrained objects will behave in accordance with the 
dynamic constraint. 

3. Grouping the constraint-force equations for multiple constraints 
into a single multidimensional constraint-force equation for all 
the dynamic constraints. 

4. Setting up and solving the dynamic constraint-force equation. 

4 . 1  D e f i n i t i o n s  
Fig. 11 gives the definition of the quantities which must be supplied for 
each constraint. The derivations of these quantities for various types 
of constraints are given in Appendix C. 

/.~ A measure of "deviation" for the constraint: 
/~(Y, t) = 0 ~ constraint is m e t  

/~ is a d-dimensional vector. 
d The number of dimensions of D. 

/~( 1 ) The rate of change of 1.~: 

0 =- ~D(YCt)) DO)(YCt), 

/~(a) is a d-dimensioned vector. 
~(2) The acceleration of/~: 

D(2)(y(t),.Tr(t),T(Q,O =_ d~Eq(Y(t),Q 

D(2) will depend llneaxly on .~" and T; thus: 

D¢,) = ~ (r~(y)P ~ + Ai(Y)~ i) +~(Y) 
b o d i e s  i 

where we define: 
r*  A d × 3 matr ix  corresponding to the net  force on body i; 

we have one such for each body in the constraint. 
A '  A d x 3 m~trlx corresponding to the net torque on body i; 

we have one such for each body in the constraint. 

/~ The part  of /3(  2 ) independent of .~" and T;  a d-dimcmsionsd 
vector. 

f The number of degrees of freedom in the constraint force. 

G i A 3 x f matrix. The constraint force on body i is given by Gi/~c " 
We have one such matr ix  for eac3a body in tb, e constraint. 

H i [ A 3 × f matrix. The constraint torque on body i i s  given by Hi.iffffc I We have one such matr ix  for each body in the constraint. 

Figure ii: Quaatities ~sociated with a dynamic constraint..~c is the un- 
known "constraint force ~ for the constraint, y, .T, and ~" axe the st~tte, net 
force, and net torque in the model, as defined in Eqn. 9 (Appendix A). See 
discussion in Sec. 4.1. Derivations of these quantities for various constraints 
are giVeR in Appendix C 

We also define 
age - -  The unknown "constraint force," 

an f-dimensional vector. 
- -  The net external applied force on the i- th body (1) 

T k - -  The net external applied torque on the i-th body 

Note that  strictly speaking, f c  is not necessarily a for_re, but  rather  is a 
quantity that  determines the constraint force (=  GiFFe) and constraint 
torque (= Hinge) on the constrained bodies; colloquially, however, we 
refer to age as the "constraint force." The vectors f l  and ~ are due 
to the external forces, such as gravity, that  act on tee i- th body body. 

The net force (torque) on a body is the sum of the net  external 
force (torque) and the constraint fortes (torques): 

r, : (  ~ G,&)+f~ 
.......... J (2) 

e o R I l ~ l l l  j 

In the above equations, we label terms for the i th body with super- 
script i 's, and the j t h  constraint with subscript j's. 

See Example 1 for a description of terms needed for a "point to 
nail" constraint. 

4.2 C o n s t r a i n t - f o r c e  E q u a t i o n  
For each constraint, we describe the desired behavior of the constraint 
"deviation" by linearly combining D,/~(1), and/~(2): 

13(~)(y,~,7. , t )+2130)(y, t)+ 1 l~(y,t)=O, t > t 0  (3) 
7 7~ - 

This equation i~ equivalent to the differential equation in Fig. 12; its 
solution brings D down to 0, then holds it at 0.1 ~'Ve will substi tute for 
D (2), D O) and D in Eqn. 3 to produce a linear system of equations in 
which we solve for fie. If we continually adjust the force so that  Eqn. 3 
is met, we will be solving the inverse dynamics problem. 

Thus, we expand ~(2) in Eqn. 3, using the definitions in Fig. 11, 
yielding: 

( r ' f '  + A'~) + g+ 2 5(" + 1_ 5 0 (4) 
7" T 2 ~" 

b o d i e s  i 

1Analytlcally, if]~0 ~ 0 the solution to the equation in  Fil~. 12 asy~aptotlcal]y 
approaches O, bu t  doesn't  ever reach/~  = O. Numerically, however, we soon reach 
E'~ = 0 within error tolermaces. 
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F igure  10: Constralut-force calculation for a "point-to-nail" constraint  (details in Sec. 4.2): Constraint  force has components opposing gravity ( - F s ) ,  opposing 
motion (-ff~),  and pulling towards hall (--ffD)- (a) User specifies constraint  at center of mass. (b) Constraint  force ini t ial ly pulls towards nail. (c-e) Once ball 
is moving towards nail, constraint  force turns around. (f) Constraint  force slows ball. (g) Steady-state: ffD = Z~v = O, fie = --ff#. Net force on ball is 0; by 
Newton's first law, the bail remains at  rest. 

E x a m p l e  1: " P o i n t - t o - N a i l "  C o n s t r a i n t .  We choose D to be the! 
vector from the constrained point, a t  J~p, to the "nail", at  ~0 (see Fig. 9). i 
We thus have: 

d = 3  
~ ( Y )  = 2 p - 2 0  

The differentiation in Appendix B.2 immediately gives us the quantities: 

~o)(y) = ~p(y) 

A = ~*TI-a  

= b 'T l  -x (L x 5) + ~ x (~ x b') 

We apply an arbi trary force to the constrained point. The ~constraint force" 
ff¢ is used directly as a force on the body, and it  contributes ~'x ff¢ = b*ff¢ 
to the torque. Thus we define: 

f = 3  
G = i SeeAppendix Cforotherexamplea. 
H = b* 

Do 

i n i t i a l l y ,  
constraint 

f f  isu't met. 
~ g D 0  # 0  

lmcon- %. D decreases 
strained % /~ov~ time. 
motion %, / 

% 

(o,0) 4 

later~ 
c o n s t r a i n t  
i s  m e t ;  

to -~ 27" to -~ 4~" to -~ 6~r 
t i m e  

G r a p h  o f  s o l u t i o n  t o :  

~D.D+ 2 ~ D +  l ~ D = O , t > t o  

Figure  12: D evolving over time. We have picked a second-order differential 
equation to describe D as a function of time. The solution yields the behav- 
ior required by the inverse dynamics problem-- the  constraint  "deviation" 
decays down to 0, assembling the model, then remains at 0, maintaining the 
constraint. The-rate  of assembly is controlled by the t ime constant  r .  See 
[Boyce and Deprima 77] for a discussion of second-order differential equa- 
tions. 

S u b s t i t u t i n g  Eqn.  2 in to  Eqn.  4, we get  the  cons t ra in t - force  equa t ion  
for a s ingle  cons t ra in t :  

E x a m p l e  2: " P o l n t - t o - N a i l "  C o n s t r a i n t .  In Fig. 10, we i l lustrate 
a simple case: A single body, with a ~point-to-nail" constraint  acting at i ts  
center-of-mass, and with gravity. Since both  the constraint force and gravity 
act on the bal rs  center-of-mass, there are no rotat ional  terms. Thus the 
quantit ies in Example  1 reduce to: 

b = b "  = 4 =  ~ = H  =2~E = 0  
L5 = X -  Xo 

.3(2) = ~- # 
r "v 

i~  = ~ 

Subst i tut ing into Eqn. 5 gives: 

. 

We easily solve for the constraint  force: 

Thus we see the constraint  force has three components: One opposing the 
force of gravity, one opposing the ball 's  velocity, and one pulling the bail 
towards the nail. Fig. 10 i l lustrates the constraint  force adapt ing to pull  the 
ball to the nail, and bring it  to rest. Once the ball is at rest at  the nail, we 
have )~ -- J~0 = 0 and ~ = 0; so the constraint  force becomes ffc = - f ig ,  
yielding a net force on the bali  of ff = ~c + ~g = 0 

coastraimt* j b o d i e s  i 

+ ~ ,r'~' A'~) s + = o (5) 
bod| .$ 6 

+ / ~ +  _2r l~(r) + ~ / ~ 1  

Not ice  t ha t ,  to  m e e t  th is  one  cons t ra in t ,  we m u s t  t ake  in to  accoun t  
the  effect of  all the  cons t ra in t  forces. 

See E x a m p l e  2 for a s amp le  de r iva t ion  of  the  cons t r a in t  forces. 

4.3 Mult iple  Cons t ra in ts  
Each  cons t ra in t  resu l t s  in a vers ion of Eqn.  5; w i t h  severa l  cons t ra in t s ,  
we have  a set  of s imu l t aneous  equa t ions  which m u s t  be solved.  

We dupl ica te  Eqn .  5, for each  cons t r a in t  in  the  mode l :  

coas~r&ints j bodies , 

+ ~ ( r ~ + A ~ )  =o,{  forail 
c o n s t r a i n t s  k ( 6 )  

bo d i e l  i 

' r~ k " ~"k: 

where  we l abe l  t e r m s  for the  k th  cons t r a in t  w i t h  subsc r ip t  k ' s .  Wr i t -  
ing th i s  s y s t e m  of equa t i ons  more compact ly ,  as a m u l t i d i m e n s i o n a l  
vector  equa t ion ,  we have  the  cons t r a in t  force e q u a t i o n  for t he  mode l :  
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where 
A4~ = ~ (rkG;- + A s H  i) 

b2,d; e, i 
7oj = F¢j (7) 

bodies  i 

Fig. 13 illustrates collecting individual constr~nt  equations into the 
multidimensional vector equation. Notice that each element of A4 is a 
matrix, and each element of Yc and of B is a vector. 

4 . 4  S o l v i n g  t h e  C o n s t r a i n t - F o r c e  E q u a t i o n  
Fig. 15 outlines the procedure to set up Eqn. 7, as well as solve it and 
compute the net force and torque on each body. 

In step 3 of Fig. 15, we call a standard linear-system solver to solve 
Eqn. 7. There are many well-known methods for solving linear sys- 
tems (see [Press et. aI. 88,Ralston and Rabinowitz 78]). We note some 
characteristics of .h4 that should be taken into account when choosing 
a solution method: 

• A4 is typically sparse. The [k,j]th entry in .M is non-0 only if 
some body is influenced by both constraint k and constraint j .  
Typically, most of the elements are zero. 

• .h4 is not necessarily square. A constraint may have d ~ f ;  for 
example, the "orientation" constraint (Appendix C.3) has d = 1 
and f -- 3, yielding a matrix which is "wider" than it is "tall." 

• A4 may be singular, implying that Eqn. 7 is overconstrained or 
underconstrained.2 

We most often use singular-value decomposition (SVD) to solve 
Eqn. 7, because it robustly handles singularity and near-singularity, as 
well as non-square systems. However, SVD does not take advantage of 
sparseness, and is a relatively slow technique. 

U n d e r c o n s t r a l n e d  E q u a t i o n s  
Constraint-force equation Eqn. 7 will sometimes be underconstrained, 
thus having many solutions. This can occur, for example, when there 
are several constraints acting on a single body; it may be possible to 
vary some of the individual constraint forces without affecting the net 
torque or force on the object. An example is shown in Fig. 14a, in 
which the pair of forces labeled "V" yield the same net force (= 21Yv) 
and torque (= 0) as the pair labeled "W". 

There is no difficulty caused by having many solutions to Eqn. 7; we 
could use any solution, since they will all yield satisfactory behavior. 
We might wish to use the solution which is smallest in magnitude, to 
avoid numerical difficulties; SVD yields this solution. 

O v e r e o n s t r a i n e d  E q u a t i o n s  

eats In Fig. 14b, the user has specified constraints which can not be 
met; there is no "correct" constraint force to be applied. In Fig. 14c, 
the specified constraints can be met, but not by moving the constrained 
point in a straight line; however, Eqn. 3 requires that  the point move 
in straight line if the constrained point is initially at rest. s 

For overconstrained systems, using the least-squares solution for 
the constraint forces typically yields "reasonable" behavior - the ob- 
ject typically assumes some intermediate configuration, for the case of 
Fig. 14b, or moves along the feasible path, for the case of Fig. 14e. 
SVD computes the least-squares solution for overconstrained systems. 

5 S u m m a r y  
We have developed a modeling system featuring constraint-based con- 
trol of rigid bodies. The bodies' behavior is determined by simulation 
of Newtonian mechanics. We compute dynamic "constraint forces" to 
apply to the bodies such that they behave in accordance with user- 
specified geometric constraints; the computation of these forces is an 
inverse dynamics  problem. 

The modeling system supports various types of geometric con- 
straints, such as "point-to-nail" and "point-to-point." The modeler 
builds objects by using constraints to connect primitive components; 
the constraint forces cause the components to assemble themselves into 
the model, and ensure that  the model stays assembled as it animates. 

2Unfortu_r~tely,  we have  some  ove r load ing  o f  t he  w o r d  " c o n s t r a i r t ' :  "overcon-  
strained" and "underconstrained" refer to the linear system of equations Eqn. 7", 
rather than to the  constraints themselves. 

3A so lu t ion  to the  problcxn of unrealizable paths is to use scalar constraint men- 
mares (d m 1}. For example, the "point-tc-nall" constraint could be redefined so  
that D is the distance from the point to the nail, rather thart the vector separating 
the  po i n t  a n d  the  nail. 

nail 

/ 0 

LM , M,.j LF oj -r L ,j _ 

A4.~ + B = 0 

Figure 13: Multiple constraints: Each constraint c o n t r i b u t e s  o n e  line to the 
equation. The collection of constraints together yields a set of simultaneous 
linear equations, expressible a~ a linear matrix equation. 

°%. 
, .  

u.d . . . .  tr~od ~11" 

b. h a l l  

O v e r c o x m t r a i : ~  <]::::=? = 

¢ .  

O v e r c o ~ s t r a i n e d  

phys i ca l l y  
' ~ " x  r e a l i z a b l e  

, k ~  a t h  
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Figure 14: Under- and Overconstralned systems. (a) Underconstrained: 
Forces "V" and "W" yield the same net force. (b) Overconstrained: There 
is no way to meet both constraints. (c) Overconsttained: Both constraints 
could be met, b u t  n o t  via the path we have chosen. 

We have developed a technique to compute the constraint forces by 
setting up and solving a "constraint-force equation." The constraint- 
force equation is a multidimensional linear equation of the form 
.A4.T'¢ + /3  -- 0, where .~c is the collection of unknown constraint forces. 

Each constraint is described by a "deviation" measure Jg, such t h a t  
/ )  = 0 when the constraint is met. D must be a twice differentiable 
function of the positions and orientations of the constrained bodies. 
Appendix C derives/~ for several types of constraints. 

6 F u t u r e  W o r k  
Further work we are interested in pursuing includes: 

* Expanding the constraint  library. Deriving new constraint "devi- 
ation" functions, as described in Appendix C. 

• Interact ive  graphical modeler. 
• Object Intersect ion.  Development of non-interpenetration con- 

straints 
• Flexible bodies. Incorporation of flexible-body simula- 

tion with dynamic constraint eontrol [Platt and Burr 88, 
Terzopoulos, Platt, Fleischer, and Burr 87]. 

• Special-case models Direct implementation of the equations of 
motion for common objects, such as the linked systems of 
[Issues and Cohen 87,Arrr~strong and Green 85]. Decreeing the 
number of constraints in the model speeds up the constralnt-force 
calculation. 

• Constraints  on velocity or  acceleration. 

We are also looking forward to using the dynamic constraints mod- 
eling system as a tool in other research areas, such as molecular biology 
[Lengyel 87] and robotics. 
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PROCEDURE TO COMPUTE FORCE AND TORQUE ON EACH BODY: 

; 1. Compute net explicit forces and torques 
for each body i 

:for each explicit ~orce j on body i 

compute force ~si 

F~  ÷ = F E j  . 
T~ += bi x FEj 

end 
"for each explicit torque j on body i 

compute torque TEi 
T~ +=TE~ 

end 
end 
; 2. Set up constraint.force equation 
initialize 2¢~ to 0 
for each constraint k 

compute ~k, D; 1), and D~ 
S[k] = ~ + 2 130) + L/3~ 

~ r k 
¢or each body i in constraint k 

compute r% ~td A~ .. 

B[k] += F'kF'E + A~T'E 
for each constraint j ac~in$ on i 

.A~ [k, j] + i i = ]2~Gj + A~H~ 
end 

end 
end 
; $. Solve constraint-force equation (Eqn. 7) 
.To = s o l v e ( . M , B )  ;linear-system solver 
; ~. Compute net forces and torques. 
for each body i 

:for each constraint j acting on i 

end 
end 

Figure  15: The procedure to compute the coustralnt  forces and the net force 
and torque on each body. See discussion in Sec. 4.4. Note tha t  the [ k , j ] t h  
clement of ~ is a dk × f j  matrix,  and the [k i t h  element of B is a 
dk-dimensional vector. Rather  than implementing 2¢1 as a "nested" array, 
it can be flattened into a ( ~  d) × ( ~  f )  array; similarly, B is formed by 
concatenating the individual  vectors into one ( ~  d)-dimensional vector. 
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F igu re  16: Summary of the equations of motion of a rigid body. 
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A p p e n d i c e s :  

A S i m u l a t i n g  N e w t o n ; a n  M e c h a n i c s  
Fig. 16 summarizes the equations of motion of a rigid body. A full discussion 
of rigid-body dynamics can be found in [Fox 67,Goldstein 83]. 

A.1 No te s  On T h e  Equa t ions  Of  Mot io n  
The Orientation Matrix R :  I t  transforms tensors from body- 
coordinates to world coordinates (see Fig. 17). As we numerically 
integrate R,  numerical noise tends to cause I t  to drift away from a 
pure rotation, yielding noticeable skewing. This can be alleviated by 
using a feedback technique, aa in [Burr 83]. Alternatively, we can rep- 
resent the orientation as a quaternion Q (see [Shoemake 85] for an 
introduction to quaternions). The equation of motion for Q is (see 
[Misner, Thorne aald Wheeler 73]): 

d 1 .  
~Q = ~wq 

We then define R to be an auxiliary variable, which is computed from 
Q as discussed in [Shoemake 85]. 

• Rotational Inert ia  Tensor I:  I determines the rotat ional  behavior o f  a. 

body. 4 For • rigid body, Ibody is constant. Note also tha t  in Fig. 16 

4A discussion of the dmwacterstics of I is beyond the scope of this paper; see 
[Fox 67,Goldsteln 83]. [Lien and Kailya 84] t ires an algorithm to compute I for 
arbitrary aonconvex polyhed.ra. 
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Figure  17: A rigid body. Orientat ion matr ix  R t ransforms vectors from 
body coordinates to world coordinates.  

we use I -a  ra ther  than  I. IEo~ can be precomputed for each body; we 
convert to world coordinates using R: 

i -~ = RI~o~a~R T 

• The Net Force f f  and Torque ~: Euler 's  principle of superposit ion 
allows us to combine the force• applied to a body  into an equivalent 
net  force applied at  the center of mass. Each force applied a t  a radius 

from the center of mass contributes b x -f  to the net torque on the 
body;  we can also have "pure  torques" acting on the body. The  net  
force and torque are thus: 

:=E:, 
forces i 

= ~ (~,×:,)+ ~ ~, 
forces i torques j 

A.2 Canonical O.D.E. Nota t ion  
For brevity, we express the collection of equations in Fig. 16 as an ordinary 
differential equation (O.D.E.),  in canonical form. For a single body, which 
we label A, we have: ~tYA = .f(yA, -fA, :A) (8) 

where we define 

yA = { ~ A  RA~A,~A} - - S t a t e  of body A 

-fA - - N e t  force on A 
~A - - N e t  torque on A 

For a model consisting of a collection of bodies, we have: 
d 
~ Y  = I(Y, ~, ~) (9) 

where we define 

y 
~c 

T 

= {yA,  y B , . . . }  - - S t a t e  of the model 
= {ffA,_fiB,. . .} - -Forces  in the model 
= {~A, : B  . . . .  } - -Torques  in the model 

Numerical methods  for solving first-order O.D.E. 's  are well known (see 
[Press et. al. 88,Boyce and Deprima 77,Ralston and Rabinowitz 78]). 
When the equations are not stiff (stiff differential equations occur when there 
are multiple widely varying t ime constants  for the solutions), an adaptive 
Adams predictor corrector is suitable; otherwise we recommend a method 
such as Gear 's  Method ([Gear 71]). 

B M a t h e m a t i c a l  D e t a i l s  

B.1 Dual of a vector  
The dual of a vector b is the ant isymmetr ic  matr ix  b°: 

b~ , define b* = - h a  0 b~ 
ba b~ -ha  0 

For any vectors b and g, we have the following identities: 

b ' ~  ~ b x ~  
b*TE _~xg 

b'Tb ~ 0 

B.2 Behavior  o f  a Point  
Consider a point  u p ,  which is fixed relative to a rigid body  (Fig. 17). We 
define bbod~ to be the vector from the center-of-mass of the body  to F,  ex- 
pressed in the body ' s  home coordinates;  since the point  is fixed, gbod~ is 
constant .  We would like to derive expressions for the position, velocity, and 
acceleration of P .  

We will need to know the  derivative of 1-1 . Remember  t ha t  since the 
body is rigid, 1-1 is constant :  body 

1-1 = RI~o~ 1L T 
a -a  T -1 a T ~tI-1 = (~/R')I~avIt + RIt'av(~TR~ ' ) (10) 

= ,~*RI~o~R T + R I ~ o ~ R T w  * /  

= ov*1-1 + I - l w  *T 

We have subst i tuted w*Pt. for ~ R ,  according to the equations of motion 
(Appendix A). 

We will also need the derivative of ~: 

= (~I-I).., + l-aN ' 
= w . i _ ~  + i _ l w , T  ~ + i _ a ~  (11) 

= ,o'zz + I -~( 'T/ ,  + C') 
= I-a(~ x ~ +  Cff) 

We have subst i tuted ~ for ~-tL according to the equations of motion. 
We can now differentiate b: 

= Rbb~2, and 

= w * I t b ~  

=~xg 
~ = ( lz)  

( ~ )  × ~ + ~  × (~ × g) 
= ( i -~ (~  × ~ + P ) )  x g + ~  × (~ × ~) 

(b*TI-:t)Cff + (b*TI -a (..g x ~) + ~ x (~ x b)) 
= H : + 3  

where we define 
H = b*TI  -~ 

= b ' T l - ~ ( L x ~ ) + ~ x ( ~ x b  ") 

We have again subst i tuted ~a*R for ~II. 
Finally, we can express the positio~, velocity, and acceleration of point  P 

terms of the s ta te  of the body  and the net force and  torque on the body:  
Xp = X + E  
% = ~ g g .  

= ~.¢+ ~ 
= ~7+o~ x b 

d • 

= - ~ + H : + 3  

where we define 
G =-~ 

(is) 

C C o n s t r a i n t  D e r i v a t i o n s  
For each type of constraint ,  we must  derive expressions for the various quan-  
tities defined in Fig. 11. The steps we follow are: 

1. Choose a simple "devlation" measure  /~. ~ is a funct ion of the  po- 
sitions ( ~ )  and  orientat ions (R)  of the constrained bodies, and  may 
optionally depend on t. 

2. Differentiate D, to derive ~(x)(~,  t); Subst i tu te  ~ and  w*R for the a~X 
and ~/.R terms which win arise (see Fig. 11). 

3. Differentiate again, to derive /~(2/(y, if, ~ ,  t). Replace ~¢ff and  ~/L 

terms with - f  and T, thus giving rise to the l inear dependence of/~(2) 
on the forces and  torques. Define the d × 3 matr ices r ,  A, and the 
d-vector ff 

4. Choose where to apply the constraint  forces needed to meet  the con- 
straint .  Most often, we apply a vector force to a fixed location of the 
constrained body; in this case, we have f = 3 degrees of freedom. 

5. Use steps 2 and 3 to derive G and  H for each body. These convert t h e  
f values in the  ~constralnt force" fie into the  actual  forces and torques 
on the bodies. 

Often, some of the quanti t ies r ,  A, G,  and H ,  which are nominal ly  matr i -  
ces, tu rn  out  to be scalar. Scalars can be handled as a special case in the  
implementation,  or scaled identity matrices can be used. 

We give examples of the  constraint  derivations for the constraints  illus- 
t ra ted  in Sec. 2.2. 
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- ~  
(a) 

Figure  18: (a) "Point-to-point" constraint.  We apply equal-and- 
opposites to the two constrained points, to cause the deviation function 
/)(Y) = - ~ P ~ ( Y ) -  ~.Pi(Y) to go to 0. (b) ~Orientation" constraint.  We 
rotate the body to cause the deviation function ~(y) = b'..P7 - 1 to go to 
O. The constraint torque is given directly by J% there is no force due to the 
constraint. 

C.1 " P o i n t - T o - P a t h "  C o n s t r a i n t  
This constraint is met a t  a t ime t if the constrained point "P"  is on the path,  
at  xPa th ( t ) ;  i t  is the same as the "point-to-nail" constraint  (Example 1 in 
Sec. 4) but  with a nail  tha t  moves. Thus several terms have a dependency 
on v~path: 

f i (y ,  t )  = X.p(Y) -- Xpath(=) 

~ ( Y ,  P, ~', 0 = ~P(Y, ~, ~) - ~ £p~t~ (0 
=b*T i - l ( /~  x ~) + ~ x (3 x b) 

a ~' .Tpath, - 
- ~ t t )  

C . 2  " P o i n t - T o - P o i n t "  C o n s t r a i n t  
This constraint is met if the two constrained points "PI" and "P~" are a t  
the same location (Fig. 18a). We thus define ~ to be the vector separat ing 
the two points. The derivation proceeds analogously to tha t  of the "point- 
to-nail" constraint: 

g(y) = Xe~ (y) - £p~ (y) 
~ ( ~ ) ( Y )  = g P A Y )  - vp~ ( y )  
~(~)(y, : ,~ )  = ~ p , ( y )  - g p ~ ( y )  

r 1 = _!.-1 
h 1 = C~IT I~ I 
p2 = _ A _  1 

A ~ = - ~ r  i~1 

To be in keeping with Newton's third law, the two bodies must  exert 
equal and opposite forces on each other. We apply an arbitrary force, Fc, 
to one of the constrained points, and the negation of tha t  force, --/~¢, to the 
other. We thus have f = 3, and define 

G 1 = 1; H 1 = b~ 
G 2 = - 1 ;  H 2 = - b ~  

C.3 " O r i e n t a t i o n "  C o n s t r a i n t  
This constraint  is met if a specified unit  vector 5 fixed in the body lines up 
with a unit  vector 2q fixed in the world (see Fig. 18b). We could define D to 
be the angle between the vectors; i t  easier, however, if  we define D to be 0 
wken the cosine of the angle (i.e. the dot-product  of the vectors) is 1. Thus 
we have d = 1, and: 

D(1)(y) (~b (Y ) )  . 
D(u)(y ,T)  ( ~ ( y ) ) .  N 

( ( b ' ~ I  - x ) f ) -  
+(b TI-'(Z × ~) + ~ × (~ × 5)). 

r = 0 
A. = N T b * T I - ~  

/~ = ( b ' T I - l ( [ x ~ ) + 3 x ( 3 x b ) ) . ~  

Notice t h a t / k  is a I x 3 matrix,  and fl is a scalar. 
We apply an arbi trary pure torque, ~c, to the body, and no force. We 

therefore have f = 3, and 

G = 0 ;  H a l  

Notice tha t  this  constraint  is "non-square" - we are applying 3 degrees 
of freedom to affect a scalar constraint  "deviation." 

F igure  19: Linking Chain between Two Towers. The chain swings natural ly  
after assembly. 

F igu re  20: Linking Chain between Two Towers, continued 
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F igu re  21: Linking Chain between Two Towers, continued 
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Figure 22: Space Station Assembly. The modules are assembled via "ori- 
entation", "point-to-point", and "point-to-nail" constraints. The constraint 
forces determine the strengths of the rocket thrusts. 

Figure 23: Space Station Assembly, continued. 

Figure 24: Caxdhouse Assembly. We use ~point-to~point, ~ and Upt~to~ 
plane" constraints to assemble a cardhouse. 

Figure 25: Caxdho~se Assembly, completed. 

Figure 26: Pandora's Chain. The chain links are instructed to connect 
togetherand hook to a trap door. Torsion springs keep the links roughly 
perpendicular to each other. Gravity and viscous damping axe applied to all 
bodies. The chains and trap door swing naturally once they axe assembled. 
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